DOCUMENT34(C)

Webinar On

Documenting GraphQL APIs:
How is it different than REST?

>
Speaker

Mark Wentowski
APl Documentation Specialist
Independent consultant

Q

Why learn GraphQL?

Growing popularity

Facilitate communication: frontend /backend
Write interactive examples

Enhance APl developer experience

DOCUMENT34(;

GraphQL vs. REST

e They both approaches to designing APIs

e They differ significantly in how they structure data and how
clients interact with the API

e Not mutually exclusive

DOCUMENT34(;

> GraphQL vs. REST

REST

e Architectural style for designing networked applications
e Manage information by using web addresses
e Strictly defined data structures

DOCUMENT34(;

> GraphQL vs. REST

REST - ‘endpoint-based’

)
pet Everything about your Pets Find outmore
Store Access to Petstore orders v
user Operations about user Find out more about our store
Models 4N

ApiResponse >

DOCUMENT34(;

> GraphQL vs. REST

REST - ‘fixed and structured’

/pet Add a new pet to the store /\ ﬁ
Name Description
body * "¢ Pet object that needs to be added to the store
object
Edit Value = Model
(body)
L
{
"ia”: |,
"category": {
"id": o,
"name": "string"
}e
"name": "doggie”,
"photoUrls”: [
string"
1,
“tags [
{
"id": o,
"name": "string"
}
1. o
"status”: "available"
) ol 2

Cancel

Parameter content type

[application/json v]

] DOCUMENT34(;

> GraphQL vs. REST

GraphQL

e GraphQL is a query language
e Schema-based approach to requesting data

DOCUMENT34(;

> GraphQL vs. REST
GraphiQL - ‘flexible’

GraphiQL [Prettify History Explorer < Docs

1 # Type queries into this side of the screen, and you will

2 # see intelligent typeaheads aware of the current GraphQL type sche
3 # live syntax, and validation errors highlighted within the text

4

S # We'll get you started with a simple guery showing your username!
6 query {

7 1}

QUERY VARIABLES REQUEST HEADERS

1 {}

DOCUMENT34(;

Underfetching / Overfetching

.. Whycan'tlget
all the data |
need in one
request?

2. Why do [have to
get back all this

data when | only
need a subset?

DOCUMENT34(;

> Qverfetching / Underfetching

Fake Blog API

SET /api/posts Getall blog posts v
POST /api/posts Create a new blog post 4
GET /api/posts/{postId}/comments Get a specific blog post's comments v
/api/posts/{postId} Update ablog post v

‘ /api/posts/{postId} Delete ablog post v
OST /api/users Create a new user Vv

GET /api/users/{userId}/posts Geta user's posts v

GET /api/comments Get all comments N

GET /api/comments/{commentId} Get a specific comment v
/api/comments/{commentId} Update a comment v

‘ /api/comments/{commentId} Delete acomment v

DOCUMENT34()

> Qverfetching / Underfetching

REST Example: Underfetching

| want details for a specific blog post and its comments.

Request #1. /api/posts/{postId} Get a specific blog post

Req uest #2: /api/posts/{postId}/comments Get a specific blog post's comments

DOCUMENT34(;

> Qverfetching / Underfetching

GraphQL - Fetch with one request

Request

1v query {

2v post(id: 1) {
3 id

4 title

5 content

6 createdAt
7v comments {
8 id

9 text

10 createdAt
11 }

12

13

14

Response

": "Sample Blog Post",

": "This is a sample blog post content.",

: "2023-07-25T12:34:56Z2",

L

3
"Great post!",

': "2023-07-25T14:00:00Z"

3
"Thanks for sharing!",

': "2023-07-25T15:30:00Z"

DOCUMENT34(;

> Qverfetching / Underfetching

REST Example: Overfetching

| want specific user details.

Request: GE1 /api/users/{userId} Get user details

Example Value Schema

Response:
ll.i.dll : ,
"name": "string",
"email": "string",

Ilage": -
"bio": "string",
"website": "string"

DOCUMENT34(;

> Qverfetching / Underfetching

GraphQL - Fetch subset of data

Request Response
v query {
user(id: 1) {
email
bio B 'email": "john.doe@example.com",
} 'bio": "Passionate about blogging and technology."
}

DOCUMENT34(;

Documenting GraphQL APIs -
Field descriptions

£ Ds

DOCUMENT34(;

> Documenting GraphQL APIs

ype Book H Type Field Description
id . ID! TE Book ifi The u'nique identifier of the book.
title: Strina! Book title The title of the book.
= , 5 k’ : Book author The author of the book.
author: String! Query booke
[]
Query { Google sheets + scripts

books: |Book!!!

Code comments

JSON / YML + scripts

DOCUMENT34(;

> Documenting GraphQL APIs

Documenting GraphQL APIs -
Conceptual docs

e Knowledge bases
e Help authoring tools
e Static site generators (Markdown / git)

DOCUMENT34(;

> Documenting GraphQL APIs
Single endpoint

Example GraphQL endpoint:
e https://fakeblogapi.com/graphgl

Documentation e Provide a code example demonstrating how to

Strategy send queries to the GraphQL endpoint using
libraries.

DOCUMENT3/HC

https://fakeblogapi.com/graphql

> Documenting GraphQL APIs

Query language focus

Example "GraphQL is the query language used by the Blog API
to allow clients to fetch data from the server."

Documentation e Introduce GraphQL and key features
Strategy ® Compare GraphQL with traditional RESTful APIs

DOCUMENT34(;

> Documenting GraphQL APIs

Schema documentation

Example 1v type {

id: !

title: !
content: !
createdAt: !
author: !
comments: []!

}

o N OY U1 W N

Documentation e Document types, fields and relationships.
Strategy

DOCUMENT34(;

> Documenting GraphQL APIs

GraphiQL support

Example “The Blog APl supports GraphiQL, an interactive IDE
for exploring and testing GraphQL queries."

Documentation ¢ Introduce GraphiQL
Strategy e Access instructions

e Testing examples

DOCUMENT3/HC

> Documenting GraphQL APIs

Query Variables

1v query GetUserDetails($userld: N {
2v user(id: $userld) {

3 id

name

email

}
}

Example

N O b

Documentation e Describe role of query variables
Strategy e Demonstrate how to use query variables

DOCUMENT34(;

> Documenting GraphQL APIs

Introspection queries

Example 1v query IntrospectionQuery {
2v __schema {
3 types {
4 name
S ¥
6 1}
7}

Documentation @ ® Explainintrospectionin GraphQL
Strategy e Provide examples that developers can execute to

explore the API's schema.

DOCUMENT34(;

> Documenting GraphQL APIs

Security

1v query GetUserDetails($userld: N {
Example 2 user(id: $userld) {

5 id

4 name

5 email

6 password

7 }

8

X

Documentation e Explain that sensitive information should not be

Strate requested.
gy e Provide best practices for ensuring confidential

information is not exposed.

DOCUMENT34(;

Example

Documentation
Strategy

> Documenting GraphQL APIs

Error handling

v {
“aprors™: [
{
"message"”: "Invalid input: Name cannot be empty.",
¥
]
}

PN U A WN
4 <«

e Explain the structure of error responses
e Document common error scenarios and how to
handle them

DOCUMENT34(;

Example

Documentation
Strategy

> Documenting GraphQL APIs

Tutorials

Describe the scenario where a user wants to create a
new blog post through the API.

Provide real-world examples and step-by-step gquides,
developers can understand how to interact with the API
in practical scenarios.

DOCUMENT34(;

> Documenting GraphQL APIs

Example tutorial

Create a new blog post

Explain the purpose of the mutation and its expected
input fields (title, content, and authorld).

1.

Mutation Query: Provide the mutation query with
placeholders for the required variables.

Query Variables: Explain the purpose of each
query variable ($title, $content, and $authorld) and
their expected data types.

Execution: Show how to execute the mutation with
actual values for the query variables.

Response: Explain the structure of the response
and how to interpret the returned data (in this case,
the id, title, and createdAt fields of the newly
created post).

Sample request

v mutation CreateNewPost($title:

1, $content:

1, $authorld: D {

createPost(title: $title, content: $content, authorId: $authorId) {

1

2

3 id

4 title

5 createdAt
6 3

7 1

Sample response

DOCUMENT34(;

Questions 7

+

4

DOCUMENT34C)

C

Thank You!

